35 research outputs found

    Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters

    Full text link
    It has been widely documented that the sampling and resampling steps in particle filters cannot be differentiated. The {\itshape reparameterisation trick} was introduced to allow the sampling step to be reformulated into a differentiable function. We extend the {\itshape reparameterisation trick} to include the stochastic input to resampling therefore limiting the discontinuities in the gradient calculation after this step. Knowing the gradients of the prior and likelihood allows us to run particle Markov Chain Monte Carlo (p-MCMC) and use the No-U-Turn Sampler (NUTS) as the proposal when estimating parameters. We compare the Metropolis-adjusted Langevin algorithm (MALA), Hamiltonian Monte Carlo with different number of steps and NUTS. We consider two state-space models and show that NUTS improves the mixing of the Markov chain and can produce more accurate results in less computational time.Comment: 35 pages, 10 figure

    Coherent Long-Time Integration and Bayesian Detection With Bernoulli Track-Before-Detect

    Get PDF
    We consider the problem of detecting small and manoeuvring objects with staring array radars. Coherent processing and long-time integration are key to addressing the undesirably low signal-to-noise/background conditions in this scenario and are complicated by the object manoeuvres. We propose a Bayesian solution that builds upon a Bernoulli state space model equipped with the likelihood of the radar data cubes through the radar ambiguity function. Likelihood evaluation in this model corresponds to coherent long-time integration. The proposed processing scheme consists of Bernoulli filtering within expectation maximisation iterations that aims at approximately finding complex reflection coefficients. We demonstrate the efficacy of our approach in a simulation example

    Gaussian Tracking With Kent-Distributed Direction-of-Arrival Measurements

    Get PDF

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading

    Health, education, and social care provision after diagnosis of childhood visual disability

    Get PDF
    Aim: To investigate the health, education, and social care provision for children newly diagnosed with visual disability.Method: This was a national prospective study, the British Childhood Visual Impairment and Blindness Study 2 (BCVIS2), ascertaining new diagnoses of visual impairment or severe visual impairment and blindness (SVIBL), or equivalent vi-sion. Data collection was performed by managing clinicians up to 1-year follow-up, and included health and developmental needs, and health, education, and social care provision.Results: BCVIS2 identified 784 children newly diagnosed with visual impairment/SVIBL (313 with visual impairment, 471 with SVIBL). Most children had associated systemic disorders (559 [71%], 167 [54%] with visual impairment, and 392 [84%] with SVIBL). Care from multidisciplinary teams was provided for 549 children (70%). Two-thirds (515) had not received an Education, Health, and Care Plan (EHCP). Fewer children with visual impairment had seen a specialist teacher (SVIBL 35%, visual impairment 28%, χ2p < 0.001), or had an EHCP (11% vs 7%, χ2p < 0 . 01).Interpretation: Families need additional support from managing clinicians to access recommended complex interventions such as the use of multidisciplinary teams and educational support. This need is pressing, as the population of children with visual impairment/SVIBL is expected to grow in size and complexity.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
    corecore